Multibeam Interferometer Using a Photonic Crystal Fiber with Two Asymmetric Cores for Torsion, Strain and Temperature Sensing
نویسندگان
چکیده
We present a fiber-optic multibeam Mach-Zehnder interferometer (m-MZI) for simultaneous multi-parameter measurement. The m-MZI is comprised of a section of photonic crystal fiber integrated with two independent cores of distinct construction and birefringence properties characterized for torsion, strain and temperature sensing. Due to the presence of small core geometry and use of a short fiber length, the sensing device demonstrates inter-modal interference in the small core alongside the dominant inter-core interference between the cores for each of the orthogonal polarizations. The output spectrum of the device is characterized by the three-beam interference model and is polarization-dependent. The two types of interferometers present in the fiber m-MZI exhibit distinct sensitivities to torsion, strain and temperature for different polarizations, and matrix coefficients allowing simultaneous measurement of the three sensing parameters are proposed in experiment.
منابع مشابه
Thermal Effects Study on Stimulated Brillouin Light Scattering in Photonic Crystal Fiber
we investigate the temperature-dependences of the Brillouin frequency shift in three different kind of single-mode fibers using a heterodyne method for sensing temperature. Positive dependences coefficients of 0.77, 0.56 and 1.45MHz/0C are demonstrated for 25 km long single-mode fiber, 10 km long non-zero dispersion shifted fiber and 100 m photonic crystal fiber, respectively. The results indic...
متن کاملNovel fiber optic polarimetric torsion sensor based on polarization-maintaining photonic crystal fiber [7004-158]
We proposed and demonstrated the application of a polarization-maintaining photonic crystal fiber for torsion sensing. The sensor has high twist angle resolution and exhibits reduced temperature sensitivity, making it an ideal candidate for torsion sensing.
متن کاملHigh-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber.
A fiber-optic Fabry-Perot interferometer was constructed by splicing a short length of photonic crystal fiber to a standard single-mode fiber. The photonic crystal fiber functions as a Fabry-Perot cavity and serves as a direct sensing probe without any additional components. Its pressure and temperature responses in the range of 0-40 MPa and 25°C-700°C were experimentally studied. The proposed ...
متن کاملTemperature Tunability of Dielectric/ Liquid Crystal / Dielectric Photonic Crystal Structures
Recently, photonic crystals doped with liquid crystal (LC) material havegained much research interest. In this article new ternary one-dimensional photoniccrystal introduced and studied. The liquid crystal layer of 5CB and 5PCH is sandwichedby two dielectric layers. For the first time, we use four structures SiO2/UCF35/CaF2,SiO2/5CB/CaF2, NFK51/UCF35/NPSK53 and NFK51/5CB/NPSK53. The effect ofte...
متن کاملPolarization-maintaining photonic-crystal-fiber-based all-optical polarimetric torsion sensor
An application of a polarization-maintaining photonic crystal fiber (PM-PCF) for torsion sensing is proposed and experimentally demonstrated. The response of the sensor is theoretically validated using the Jones matrix. High normalized sensitivity of ∼0:014=° was measured within a linear twist angle range from 30° to 70°. The sensor response was observed to be highly repeatable over a 90° twist...
متن کامل